HyperOpt调参

1. 机器学习调参工具之HyperOpt

1.1 示例代码:

from hyperopt import hp, fmin, rand, tpe, space_eval, anneal, partial
# 定义目标函数
def q (args) :
    x, y = args
    return x ** 2 + y ** 2
# 定义参数空间
space = [hp.uniform('x', 0, 1), hp.normal('y', 0, 1)]
# 指定搜索算法
# algo指定搜索算法,目前支持以下算法:
# ①随机搜索(hyperopt.rand.suggest)
# ②模拟退火(hyperopt.anneal.suggest)
# ③TPE算法(hyperopt.tpe.suggest,算法全称为Tree-structured Parzen Estimator Approach)

algo = partial(anneal.suggest,)
# 寻找最佳匹配的space,使fn的函数返回值最小
best = fmin(q, space, algo=algo,max_evals=100)
100%|██████████| 100/100 [00:00<00:00, 1026.67it/s, best loss: 7.504195016189939e-06]
print(best)
{'x': 0.002299082182183151, 'y': 0.0014894348377011664}

上一篇
HyperOptSklearn调参 HyperOptSklearn调参
1. 机器学习调参工具之HyperOptSklearn1.1 示例代码:from hpsklearn import HyperoptEstimator, any_classifier, any_preprocessing from skle
2019-03-12 杜敏
下一篇
Tensorflow学习笔记 Tensorflow学习笔记
Tensorflow 学习笔记1. 设置tensorflow输出日志级别import os os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2" 2. tf.argmax()函数A = [[1, 3, 4, 5
2019-02-20 杜敏